
Advances in Computer Science and Information Technology (ACSIT)
Print ISSN : 2393-9907; Online ISSN : 2393-9915; Volume 2, Number 7; April – June, 2015 pp 87 – 91
Krishi Sanskriti Publications
http://www.krishisanskriti.org/ACSIT.html

A Survey on Dynamic Load Balancing algorithms
in Cloud Computing

Surbhi Kapoor
M.tech, Department of Computer Science and Technology,

Jaypee Institute of Informaion and Technology, Noida
E-mail: surbhikapoor0509@gmail.com

Abstract: Cloud Computing is amongst the latest emerging
paradigms in IT sector where services are provided over the internet
to the user on demand. Load balancing is one of the most
challenging areas in cloud computing. The primary concern is to
distribute load efficiently and effectively among virtual machines so
as to reduce response time of tasks. Various static and dynamic load
balancing algorithms have been developed to address this problem.
The static ones are easier to implement and are relatively less
complex but are not suitable for a cloud environment where the
number of tasks being put up by the end users and the requirements
of the tasks cannot be known before hand, so load on cloud servers
changes dynamically. However dynamic load balancing algorithms
although are complex but still better suited for cloud atmosphere. In
this paper we survey various dynamic load balancing algorithms that
have been proposed to solve the problem of load balancing in cloud.
A discussion and comparison of these algorithms has been done to
give a better insight into the pros and cons of the algorithms.

1. INTRODUCTION

Cloud computing can be defined as a network of remote
servers being hosted over the internet for storage, management
and processing of data. Cloud is a conventional term for
anything that incurs delivering hosted services over the
internet. These are broadly divided into three categories:
Infrastructure as a service, Platform as a service, and Software
as a service.
A Cloud service has three different characteristics. The first is
that it’s a pay as you use model which means that it is sold on
demand, the second one is its elasticity which means that user
can have as much of a service or as little of a service as they
want and the third characteristic is that it is entirely handled by
the provider. Load balancing is one of the most challenging
areas in cloud computing. With the increase in number of
cloud users, the load on servers of cloud is also increasing. It
has been reported that from 2012 to 2017, data centres
workload will grow 2.3-fold whereas cloud workload will
amplify 3.7 fold. So balancing load conveyed to the servers of
cloud is one of the key concerns in cloud computing.
Load balancing is basically dividing the amount of work
among the servers so that more work can be done in same

amount of time and therefore all users get served faster. It
targets to optimize throughput, maximize resource usage,
reduce response time to minimum possible value and avoid
overloading of any single resource. Load balancing is the
necessity of cloud computing.
Load balancing algorithms can be either static or dynamic.
Static algorithms are suitable for homogeneous and stable
environments whereas Dynamic algorithms are more flexible
and take into account different types of attributes in the system
both prior to and during run-time. These algorithms can adapt
to changes and can provide better results in heterogeneous and
dynamic environments like that of cloud.
Many researchers have proposed dynamic load balancing
algorithms. In this paper we will be reviewing some of such
algorithms and a comparison of these algorithms will be done.
The rest of the paper is organized as follows. In section 2,
some of the existing dynamic load balancing algorithms will
be reviewed. After that, we discuss and compare the relevant
approaches in section 3.

2. DYNAMIC LOAD BALANCING ALGORITHMS

Dynamic load balancing algorithms are better suited for cloud
computing environment as compared to static ones because
the former ones keep in mind the prior information about
nodes like available bandwidth, memory, processing power
and so on, before assigning load as well as the run time
changes in these parameters are also considered whereas the
static ones keep in mind only the prior information about these
parameters before assigning tasks to them. The run time
changes are not considered by static load balancing
algorithms. This may lead to a particular node getting
overloaded while some other nodes may get underutilized. So
in our paper we are focusing on dynamic load balancing
algorithms for cloud environment.
In [1], the goal is to find such an algorithm that considers
priorities of users to assign their tasks. Chen Proposed an
algorithm called PA-LBIMM (user Priority Aware Load
Balanced Improved Min Min) scheduling algorithm which
takes the characteristic of min-min scheduling algorithm as

Surbhi Kapoor

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN : 2393-9907; Online ISSN : 2393-9915; Volume 2, Number 7; April – June, 2015

88

foundation to minimize the completion time of all resources
and improve the load balance factor. It divides the user
submitted tasks into two categories, VIP user tasks and
ordinary tasks such that VIP tasks are executed first and are
assigned to only VIP resources. After all the VIP tasks are
assigned, then ordinary tasks are scheduled to both VIP and
ordinary resources. After all the tasks get assigned, load
balancing is then done by selecting the task with minimum
completion time from the most heavily loaded resource. Now
the completion time of this task is calculated on all the other
resources and a minimum value is obtained. If this minimum
value of completion time is less than the makespan of the
tasks, then the particular task is reassigned to that resource.
This continues until no other task on the most heavily loaded
resource with the minimum completion time needs
rescheduling. Since cloud is a pay according to use model, so
issuing tasks on the grounds of user priorities is a good idea
for scheduling the load.
In [2], the author introduced a Periodic_Ant Colony
Optimization based scheduling algorithm (PACO) that uses
the basic ant colony optimization algorithm in cloud
computing and improves its pheromone update policy by
including a periodic strategy. Pheromone intensity is a factor
that gives the load assigned to a particular resource. In basic
ACO, when a particular resource is assigned to a task, its
pheromone intensity will get increased. This will increase the
chances of that resource being selected in future for other
tasks and hence load on that resource will be increased
gradually. This particular drawback is overcome by PACO
algorithm in which if a particular resource is selected, then its
pheromone intensity gets reduced which will gradually lower
the chances of selection of that resource by other tasks. If
pheromone intensity of a resource gets reduced to a minimum
threshold value, then that particular resource will turn off. This
way if all the resources are turned off, then this leads to the
end of a scheduling period and the number of tasks being
assigned in that period are recorded. Remaining tasks will be
assigned in new scheduling periods. In the end, if the
scheduling scheme is best by far, then the pheromone intensity
of that resource gets increased which increases the chances of
selection of that resource by ants in future. Thus, ants get to
select the better scheme. In this way, a periodic scheme is
introduced. The author has compared his strategy with min-
min algorithm on the basis of resources load and makespan of
tasks has shown that PACO performs better than min-min.
A LBACO (Load Balancing Ant Colony Optimization)
algorithm is proposed in [3] that will balance load in a cloud
environment using Ant colony Optimization algorithm as the
foundation. It reduces the makespan of a given tasks set and
balances the entire system load. The algorithm initializes the
pheromone of all VMs on the basis of number of processors,
their capacity and the bandwidth factor and places the ants on
VMs randomly. It then choses the next VM for an ant on the
basis of probability which is computed as the ratio of
pheromone of that machine to the ratio of pheromone of all
machines. The one with the maximum probability among

neighbouring VMs is chosen as the next VM by the ant. When
an ant completes the tour, the pheromone is updated locally
and if the solution obtained is current optimal solution, then
global updation of pheromone is done. The algorithm
continues as long as iterative condition satisfies. For each
iteration, all the ants complete their tour. This algorithm is
simulated in CloudSim and the results have been compared
with FCFS and ACO on the basis of load imbalance and
makespan of the tasks and it has been shown that the proposed
approach performs better than these algorithms.
An SLA-aware two level decentralized load balance
architecture (tldlb) has been proposed by Li in [4] which
focuses on reducing the SLA violation rate. SLA is the service
level agreement between the service provider and the end user.
The two levels in the architecture are the global load balancer
and the local load balancer which is SLA aware. The local
balancer keeps track of the load of the VMs in its virtual zone
and share this information with the corresponding global load
balancer. The local load balancer choses VMs for the current
task using nn-dwr (neural network based dynamic weighted
round robin) algorithm which is also being proposed by the
author. If the current working VMs can’t bear the load, then
local load balancer will generate VMs from the spare VM
pool. If there is no VM available even in the spare VM pool to
serve the incoming requests, then corresponding global load
balancer will be informed by the local load balancer. The
global load balancers are connected to each other via P2P
connections. It will then forward the requests to another
lightly loaded virtual zone of some other global load balancer.
The comparison of proposed nn-dwr has been done with other
algorithms and it is 1.49 times faster than Artificial neural
network based algorithm, 1.86 times faster than weighted
round robin and 1.21 times faster than capacity based load
balancing algorithm
The author in [5] Proposed an Agent Based Dynamic Load
Balancing (ABDLB) algorithm in cloud computing. The
proposed approach focuses on two factors one is load
balancing of all the servers and second is reducing the CPU
time units being consumed. In this algorithm, the mobile agent
which is a software program is responsible for balancing the
load being put on cloud servers. The mobile agent takes two
walks. In the first one, it finds the total number of jobs
assigned to each server. Using this, average number of jobs is
calculated. This average is then used to assign a status to each
server. If the total number of jobs being assigned to a server is
more than the average number of jobs, then status of sever is
overloaded and if the number of jobs assigned to a particular
server is less than the average number of jobs, then server is
considered to be underloaded. In the second walk, the agent
transfers the jobs from the overloaded servers to the
underloaded servers. This particular algorithm depends on a
single mobile agent responsible for entire load balancing. The
light weight mobile agent moves from server to server to
collect the load information. This will not affect the network
load too much. This scheme has been compared with a
centralized server based load balancing policy on the basis of

A Survey on Dynamic Load Balancing algorithms in Cloud Computing 89

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN : 2393-9907; Online ISSN : 2393-9915; Volume 2, Number 7; April – June, 2015

throughput, CPU time unit consumed and average waiting
time and ABDLB performs better for all the factors.
Jiang[6] proposed a Predictive Dynamic Load Balancing
algorithm that considers into account service type demanded
by the user. Most of the traditional load balancing algorithms
monitor load on the servers periodically and assigns requests
to the servers on the basis of periodic load monitoring.
However load between monitoring intervals can change. This
proposed algorithm overcomes this advantage by predicting
resource utilization between monitoring intervals. Also the
type of service has been considered by the algorithm so that
resource overhead of a server is computed separately for CPU
services, memory services, disk I/O services and network
bandwidth services. Consequently, the following two
parameters being introduced in the paper surely improve the
response time and throughput of the system.
A Dynamic Compare and Balance Algorithm (DCABA) has
been proposed by Sahu[7]. Other load balancing strategies
focus only on balancing load based on CPU usage, RAM
usage and bandwidth usage in physical servers but this
proposed algorithm also decreases the number of current
active servers so as to support green computing concept and
also to reduce the cost of cloud providers. In this algorithm,
load on the host machines in cloud is evaluated dynamically in
terms of total capacity of the server. The total capacity limits
of the host machine will be the host limit. On multiplying the
host limit by weight coefficients, upper and lower threshold
values are computed. The weight coefficients are computed by
the cloud provider on the basis of dynamic behaviour of
services and applications. If the load is greater than a
predetermined upper threshold value, then the extra load is
transferred to other suitable host machines. On the other side,
if load on host machine is lesser than lower threshold value,
then server consolidation is applied which means switching
off this particular server and transferring its entire load to
other suitable host machines. This is done to save energy
being consumed up in the cloud system. Due to this server
consolidation approach being followed, there is a trade-off
existing between throughput of the system and the energy
being consumed. It has some working challenges like selection
of appropriate threshold values and selection of migration
policies.
Ghafari[8] proposed a Bee-MMT algorithm (Artificial Bee
Colony algorithm- Minimal Migration Time) that makes use
of bee colony algorithm to detect over utilized hosts and then
using MMT selection for VMs, it decides which VMs can be
shifted from the over utilized hosts. It then also finds the
underutilized hosts and shifts all VMs assigned to these hosts
to the other suitable hosts and then moves these hosts to
switch off mode to save energy. Like the DCABA algorithm
proposed in [7], this approach also cannot entirely solve the
trade-off between response time of the tasks and energy
consumption. This proposed algorithm can get greater power
consumption than other algorithms thus supporting green
computing concept. Also it is noteworthy that Bee-MMT has
very less number of VM migrations. SLA violation has been

used to evaluate the performance of the algorithm and author
has introduced two metrics to calculate SLA violation. These
are SLATAH (SLA violation time per active host) and
PDM(performance degradation due to migration). The
proposed algorithm has been simulated using CloudSim
toolkit and results are compared with other algorithms on the
basis of SLA violation, SLATAH ,PDM and VM migration. It
has been shown that Bee-MMT can reduce the power
consumptions and but its performance is weaker than other
algorithms in case of SLA violation. However the ration of
increase in SLA violation is much lesser than ratio of decrease
in power consumption.
Wenhong [9] proposed the DAIRS (Dynamic and Integrated
Resource Scheduling) algorithm. Unlike other traditional
algorithms, this algorithm not only considers CPU load but
also takes into account memory and network bandwidth load
for calculating the load on a particular machine. Four types of
queues are maintained by the algorithm. These are waiting
queue containing requests that are not allotted immediately but
are waiting, request queue containing the requests that are
new, optimizing queue is for those tasks that need to be
reallocated and delete queue keeps the tasks whose end time is
pending. New tasks are accepted from the queues on the basis
of priority of the queues where priority list is such that waiting
queue is having the highest priority, then is the request queue,
then optimal queue and then delete queue with the lowest
priority. The allocation algorithm which is being used for
assigning tasks from the queues to the servers firstly sorts the
servers in increasing order of utilization and then it divides the
utilization of physical servers into multiple intervals. The
comparison of DAIRS algorithm has been done with three
other algorithms that are ZHCJ, ZHJZ and rand algorithm and
it hs been shown that DAIRS performs better than others on
terms of average imbalance level of a cloud datacentre,
average imbalance value of each server and running time of
the algorithms.

3. DISCUSSION AND COMPARISON

In this section we will be discussing and comparing various
algorithms being mentioned in section. Table I gives a
comparison among the discussed load balancing algorithms on
the basis of their pros and cons. The PA-LBIMM considers the
priorities of the users whether they are VIP or ordinary. This is
an advantage because cloud is a pay-per-use model, so giving
priority to the users as they pay will be beneficial for the
reputation of cloud vendor. However the drawback is that
dependencies of the tasks, their deadlines, the geographic
location of tasks and resources, factors like these have not
been considered in this algorithm. Whereas one of the other
algorithm discussed i.e. nn-dwr when applied on the two level
decentralized load balancing architecture (tldlb) keeps in mind
that SLA should not be violated. Thus response time,
throughput or we can say deadlines of tasks are considered in
this algorithm. Another advantage of this algorithm is that the
architecture is decentralized. This avoids the problem of

Surbhi Kapoor

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN : 2393-9907; Online ISSN : 2393-9915; Volume 2, Number 7; April – June, 2015

90

central point of failure. But the drawback with this approach is
that transfer of information between the two levels of
architecture may consume a lot of network bandwidth.
DCABA also has the same disadvantage that it adds
congestion to the network and consumes a lot of network
bandwidth because each host periodically broadcasts its load
to all the other hosts. Another drawback is that the energy
consumption factor added will affect the quality of service
provided to the user. Its advantage is that besides balancing
load, it also focuses on decreasing the number of active
servers so as to reduce power being consumed and support
green computing. The same advantage is also found in Bee-
MMT where if underutilized hosts are found, then if possible
all the VMs of this host are migrated to other hosts and it is
turned to sleep mode. This way it also supports green
computing. But unlike DCABA, Bee-MMT also focuses on
reducing SLA violation. Another advantage is that it reduces
the number of VMs being migrated. It’s drawback is that still
a trade-off exists between power consumption and SLA
violation. One of the other dynamic load balancing algorithms
discussed is ABDLB (Agent Based Dynamic Load Balancing)
algorithm has a light weight agent that can move from server
to server carrying the load information without much affecting
the bandwidth or the load of the network. However the scheme
is centralized. If the mobile agent fails, the entire setup of load
balancing fails. Also the time being consumed to balance load
with this approach is a drawback. The two ant colony

optimization based approaches have been discussed that are
LBACO and PACO. LBACO algorithm reduces the makespan
of a given task set but it does not consider the dependencies of
the tasks. Also the pheromone update strategy of LBACO is
such that it can increase the load on a particular node. This
drawback is not in PACO approach. The pheromone update
strategy of PACO fairly distributes the load among the nodes.
But the problem of task dependencies is not addressed in this
algorithm too. PACO is the first periodic scheduling strategy.
While most of the other algorithms discussed consider only
CPU utilization for measurement of load, the DAIRS
algorithm also consider network bandwidth and available
memory. However additional overhead has been added due to
maintenance of four different kinds of queues. Another
challenge is to set threshold values to judge over or under
utilization of CPU, network bandwidth and memory.

4. CONCLUSION AND FUTURE WORK

Load balancing is a prime area of concern in cloud computing.
There is a need to balance this load so that the user’s tasks are
completed on time. Various researchers have come up with
their ideas for load balancing in cloud. Static algorithms are
used in an environment where there is prior knowledge of
VM’s capacity before execution starts whereas dynamic
algorithms keep track of capacity of VMs during runtime. So
such algorithms although are more complex but still better fit

Table 1

Algorithms

Pros Cons

PA-LBIMM Considers the priorities of
the user

 Deadlines of the tasks, their dependencies, geographic location of
tasks and resources has not been considered.

LBACO Minimizes the makespan
of a given task set.

 Pheromone update strategy being used can accumulate the load on
a particular VM

 Dependencies of the tasks has not been considered
PACO First algorithm to

introduce periodic
strategy

 Good Pheromone update
policy has been used
which avoids
accumulation of load on a
particular VM

Does not consider task dependencies

A Survey on Dynamic Load Balancing algorithms in Cloud Computing 91

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN : 2393-9907; Online ISSN : 2393-9915; Volume 2, Number 7; April – June, 2015

nn-dwr Reduces SLA violation
rate

 Considers deadlines of
the tasks

 Decentralized
architecture, so no central
point of failure

 Consumes a lot of network bandwidth

DCABA Supports green computing Consumes a lot of network bandwidth
 QOS provided to the user is not good

Bee-MMT Reduces SLA violation
 Less number of VMs

being migrated
 Reduces energy

consumption

 QOS provided to the user is still not good

ABDLB adds very less congestion
to the network

 Centralized approach
 Takes up a lot of time

DAIRS Considers not only CPU
utilization but also

memory and network
bandwidth for

computation of load

 Setting threshold values is an issue
 Causes a lot of overhead

to a cloud environment which is dynamic. We have reviewed
various dynamic load balancing algorithms in this paper. We
have compared these algorithms using their pros and cons.
User priority, reduced response time, energy conservation,
service differentiation are some of the factors which have been
considered in the reviewed algorithms. In some algorithms
that focus on energy conservation, there is still a trade-off
between energy consumption and the response time of the
tasks. In future, such dynamic load balancing algorithms can
be developed for cloud computing which completes the tasks
within their deadlines and also reduces energy being
consumed tasks.

5. REFERENCES

[1] Huankai Chen; Wang, F.; Helian, N.; Akanmu, G., "User-

priority guided Min-Minscheduling algorithm for load balancing
in cloud computing," Parallel Computing Technologies
(PARCOMPTECH), 2013 National Conference on , vol., no.,
pp.1,8, 21-23 Feb. 2013

[2] Weifeng Sun; Ning Zhang; Haotian Wang; Wenjuan Yin; Tie
Qiu, "PACO: A Period ACO Based Scheduling Algorithm in
Cloud Computing," Cloud Computing and Big Data
(CloudCom-Asia), 2013 International Conference on , vol., no.,
pp.482,486, 16-19 Dec. 2013

[3] Kun Li; Gaochao Xu; Guangyu Zhao; Yushuang Dong; Wang,
D., "Cloud Task Scheduling Based on Load Balancing Ant

Colony Optimization," Chinagrid Conference (ChinaGrid),
2011 Sixth Annual , vol., no., pp.3,9, 22-23 Aug. 2011

[4] Chung-Cheng Li; Kuochen Wang, "An SLA-aware load
balancing scheme for cloud datacenters," Information
Networking (ICOIN), 2014 International Conference on , vol.,
no., pp.58,63, 10-12 Feb. 2014

[5] Grover, J.; Katiyar, S., "Agent based dynamic load balancing in
Cloud Computing," Human Computer Interactions (ICHCI),
2013 International Conference on , vol., no., pp.1,6, 23-24 Aug.
2013

[6] Jiawei Jiang; Haojiang Deng; Xue Liu, "A predictive dynamic
load balancing algorithm with service
differentiation," Communication Technology (ICCT), 2013 15th
IEEE International Conference on , vol., no., pp.372,377, 17-19
Nov. 2013

[7] Sahu, Y.; Pateriya, R.K.; Gupta, R.K., "Cloud Server
Optimization with Load Balancing and Green Computing
Techniques Using Dynamic Compare and Balance
Algorithm,"Computational Intelligence and Communication
Networks (CICN), 2013 5th International Conference on , vol.,
no., pp.527,531, 27-29 Sept. 2013

[8] Ghafari, S.M.; Fazeli, M.; Patooghy, A.; Rikhtechi, L., "Bee-
MMT: A load balancing method for power consumption
management in cloud computing," Contemporary Computing
(IC3), 2013 Sixth International Conference on , vol., no.,
pp.76,80, 8-10 Aug. 2013

Wenhong Tian; Yong Zhao; Yuanliang Zhong; Minxian Xu; Chen Jing,
"A dynamic and integrated load-balancing scheduling algorithm for
Cloud datacenters," Cloud Computing and Intelligence Systems
(CCIS), 2011 IEEE International Conference on , vol., no.,
pp.311,315, 15-17 Sept. 2011

